If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60x^2+64x-256=0
a = 60; b = 64; c = -256;
Δ = b2-4ac
Δ = 642-4·60·(-256)
Δ = 65536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{65536}=256$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-256}{2*60}=\frac{-320}{120} =-2+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+256}{2*60}=\frac{192}{120} =1+3/5 $
| 2x=0,25 | | 5b+0.5=-4,75 | | 8x2+5=35 | | -24+6s=45 | | 12w-9w=9 | | 1560+43x=2678 | | -40+5w=44 | | 6760-61x=6028 | | 1560+43x=6760-61x | | 3+(x+8/3)=0 | | 24=1.2^x | | x/(-12)=7 | | 7x+5x-9=3(4x+3) | | -5(-20x)=100 | | 8x-2(×+5)=7x-1 | | 16(18x−30)=+6x | | 8y-4=13y+41 | | 9y+2=112 | | 11x+32=32+11x | | Y+5=3x-3 | | 7x+6=112 | | F(x)=5^x+1 | | 8-9x=21 | | 12=-4t-12 | | 7t+3=3t-13 | | 9+8x=17x+73 | | 0=75+25x | | 6x-3x2=0 | | 17x2=14 | | 25x-75=0 | | X/22=55/x | | 9+8x=−17(x−2)+11+28 |